F*

Ethan Boicey, Core Technologies Developer — hardware@femtostar.com

More Contact Info (join our Matrix room!) — femtostar.com/about-contact

5% Annual PocketQube Conference



» “Satellite communications, done differently”

* The FemtoStar Project is a global community, organized online, developing a
satellite communications network

* “Open infrastructure” architecture — no strict “user terminal” versus
“gateway” distinction, can connect between any two terminals
* Focused on user privacy and security

* Two satellite designs, targeting PocketQube (codenamed Azimuth) and
CubeSat (codenamed Horizon)




Real-time communications service as part of a constellation — a brief outage
may be okay for store-and-forward, not acceptable here

Medium-to-long-duration mission — designed for 6+ years in service

Designed to support orbits up to 1000 km — on the fringes
of the inner Van Allen belt.

Rideshare launch provides infrequent opportunities
for satellite replacement if a “hole” opens

“Holes” in constellation reduce coverage angle, may
make coverage intermittent in some areas

Image Credit: FemtoStar



Single-Event Upset (SEU) - radiation-induced errors

* Mitigate with redundancy - the focus of this talk

Total lonizing Dose (TID) - Long-term radiation-induced damage
* Mitigate with shielding or rad-hard parts

Rapid temperature and battery charge cycling

* Especially in low orbits — ~4800 orbits per year!

Diagnostics and fixes must be done remotely

Virtually no opportunity to repair hardware...
unless you're these guys

Image Credit: NASA, Public domain, via Wikimedia Commons



* Traditional satellites rely on ultra-specialized, space-grade hardware and
tightly-controlled manufacturing processes to mitigate hardware failure

* Radiation-hardened components, clean-room manufacturing, etc

 Complex, expensive validation processes

* Relatively “old” hardware often gets used because it has
already gone through validation or has flight heritage

* Performance and efficiency may be sacrificed to use “proven” parts

* Usually prohibitively expensive for FemtoStar, and for many
other small satellite projects

Image Credit: Henriok, CCO, via Wikimedia Commons



Many small satellite projects take a dramatically different approach

Build satellites like regular, “non-space-grade” electronic devices
Some amount of extended component validation should still be done

Short operational lifetime is acceptable for many scientific, amateur radio,
or technology demonstrator missions

Some proposals involve constellations of many such
satellites, with a network tolerant of a few dead ones

This can be a good idea, and is highly cost-effective
For FemtoStar’'s mission, this is risky

Image Credit: Jt pandey, CC BY-SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia Commons



* FemtoStar takes an alternate approach — massively reduce the number of
potential failures of components that can cause the failure of a satellite

* Single points of failure have been near-entirely eliminated

* As with most small satellites, off-the-shelf components are used

* Redundancy allows for lessened reliability demands on individual parts

« Component selection remains cautious and reliability-focused (highest available
temperature grades, flexible-termination capacitors, etc)

* As with most COTS parts in small satellites, extended testing is still critical

» Satellite must attempt automated recovery and allow for manual diagnostics
and maintenance, even when operating with damaged hardware




* Two independent electrical buses (one bus supported, but less redundant)

« Two, three, or four Service Transceiver Units (STU), which are independent
from each other and have some internal redundancy

 ADCS magnetorquers and sensors, optional AIS thruster, etc.
* Optional backup telecommand-only transceiver, in addition to STUs
* Onboard compute (Helium - three units with multiple processors each)

* Helium is responsible for monitoring, and, if failed, attempting to recover other hardware
* “Core” hardware, serves as the central connection between other subsystems
* Only complex subsystem without an onboard “twin” — demands high reliability




What Is Helium?

* Triple-modular-redundant computer
* Three units, each known as a Helion
* Helions run in lockstep (cycle-for-cycle)

e All units monitor each other A e

* Designed to replicate state in real time
when recovering a failed Helion

* |/O is achieved through voting — a faulty
Helion will be outvoted by the other two.

Output Voting Logic Input Isolators

Outputs to External Devices Inputs from External Devices

* Runs from multiple redundant clocks

Oct 21, 2021

9 Image Credit: FemtoStar




 Based around a Lattice ECP5 FPGA

* Quite well-reverse-engineered

e Supported by a FOSS toolchain!

* Not too expensive, quite power-efficient

* Relatively self-sufficient within Helium

* Includes RAM (24MB external, ~58KB on FPGA)

and CPU core (RISC-V or in-house LibreVLIW)
* Generates its own power rails from the bus

» Configuration flash is NOT shared

» Selects its own clock from multiple available

| LILILd
[1I11]1e & ¢ ¢
D s

- Image e _

.




Most people have a relatively intuitive understanding of redundancy

* “If one breaks, you have another” is a simple, intuitive concept

Having two of a device allows one to fail, but not to disagree

* If results differ, it is not clear which is correct — “never go to sea with two chronometers’

Y

Having three of a device allows one to disagree on outputs

* Triple-Modular Redundancy: two correct results outnumber one incorrect result

Many explanations of redundant hardware don’t go much further than this

Actual implementation of this principle is more complex




 Computers are theoretically deterministic — same inputs, same outputs

* Multiple CPUs given the same inputs at the same times will have the same internal state

* This only holds true if their initial states are the same and synchronization is maintained
* Clock signal is an input too — must match, else lockstep synchronization is lost

» A failure in one unit is likely to cause it to fall out of sync with the others, or
at the very least output incorrect data

* Not imminently dangerous (faulty unit outvoted), but a TMR system already operating
with one failed unit has no further redundancy against failure of another unit

* Recovery from this state without resetting the entire system is not trivial

* Even with three units, something must still decide which output is correct




* “Voter” circuit - given three bits, decide whether the majority are 1 or O
» Can create a single point of failure if you're not careful

» Voter failure is no worse than failure of whatever that voter outputs to

* Nearly everything outside Helium on FemtoStar is redundant

* Can be extremely simple
* Easily implemented with one or two discrete logic ICs
* Even simpler discrete MOSFET implementations possible

» Discrete FETs have large features, lack the parasitic thyristor
structures that allow for radiation-induced single-event latch-up

* Optionally, rad-hard parts can be used for non-redundant outputs (e.g. thruster)

- Image - Femtosrar’ e IogiSim-eVOIUtion _




* In order to maintain lockstep, all units must work from the same clock

« Specifics of this clock are not as important as the fact that there is “one true clock”

* The need for a single, shared clock signal runs counter to redundancy

* Three clocks and a majority gate is not practical — minor real-world
phase/frequency differences will produce an unusable output

» Central “clock supervisor” devices result in single points of failure
* The solution: feed all clocks to all Helions, let them choose deterministically

* If each Helion chooses a clock signal the exact same way, all will choose same clock
 Failure in clock monitoring becomes no worse than any other failure of one Helion




The system as a whole should know the status of all units

However, a unit must not know which unit it is, lest that affect its outputs

* Remember: same outputs depend on same inputs, and this is a differing input

Central “system supervisors” are single points of failure

* Helions must determine each others status, but this means knowing which unit is which

The solution: expose the unit number only to a “Status Unit” on the Helion
« Status Unit combines its known unit number with information from other Helions

« Determines the status of the entire system, including all Helions, based on this

* Exposes only system status to its host processor — all CPUs see same status




Majority gates will prevent faulty outputs, but don'’t alert you to failures

Logic failures, especially on SRAM-based FPGAs, can be subtle
* Logic gates are LUTs in SRAM - one bit flip in a LUT can make 2+2 = 262148 in an adder

* An internal failure that has not yet affected output should still be detectable

Helions need a way to “prove” to eachother that they are working

The solution: expose a “state check” bit to the other Helions

* Check bit generated based on various pieces of the Helion’s internal state, each cycle
* Provided to the Status Engine of other Helions to check against other state check bits
* Must be correct for millions-to-billions of cycles before a Helion is deemed operational




When a unit fails, you need to try to bring it back before another fails too
* Remember: TMR only protects against one failure at a time

» After a Helion is recovered (e.g. by watchdog reset, automated power cycle, workaround
FPGA bitstream from ground crew, etc), state must be transferred back onto it

This is trivial if all Helions are reset, and this is available as a backup

However, to do so without interrupting service is more complex

The solution: the Status and Replication Engine

* SRE “shadows” memory writes from working Helions to target Helion in real-time

* Unused memory cycles used to scrub memory and replicate the scrubbed data

* Once all memory is replicated, registers are dumped and replicated, target is started




F*

Ethan Boicey, Core Technologies Developer — hardware@femtostar.com

More Contact Info (join our Matrix room!) — femtostar.com/about-contact

5% Annual PocketQube Conference



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

