
FemtoStar Helium
Fault-Tolerant Computing for When 2 + 2 = 262148

Ethan Boicey, Core Technologies Developer – hardware@femtostar.com

More Contact Info (join our Matrix room!) – femtostar.com/about-contact

5th Annual PocketQube Conference



2 Oct 21, 2021

About FemtoStar, Briefly

● “Satellite communications, done differently”
● The FemtoStar Project is a global community, organized online, developing a 

satellite communications network
● “Open infrastructure” architecture – no strict “user terminal” versus 

“gateway” distinction, can connect between any two terminals
● Focused on user privacy and security
● Two satellite designs, targeting PocketQube (codenamed Azimuth) and 

CubeSat (codenamed Horizon)



3 Oct 21, 2021

FemtoStar’s Mission Presents Unusual Challenges

● Real-time communications service as part of a constellation – a brief outage 
may be okay for store-and-forward, not acceptable here

● Medium-to-long-duration mission – designed for 6+ years in service
● Designed to support orbits up to 1000 km – on the fringes

of the inner Van Allen belt.
● Rideshare launch provides infrequent opportunities

for satellite replacement if a “hole” opens
● “Holes” in constellation reduce coverage angle, may

make coverage intermittent in some areas

Image Credit: FemtoStar



4 Oct 21, 2021

Space – A Harsh Environment for Electronics

● Single-Event Upset (SEU) – radiation-induced errors
● Mitigate with redundancy – the focus of this talk

● Total Ionizing Dose (TID) - Long-term radiation-induced damage
● Mitigate with shielding or rad-hard parts

● Rapid temperature and battery charge cycling
● Especially in low orbits – ~4800 orbits per year!

● Diagnostics and fixes must be done remotely
● Virtually no opportunity to repair hardware...

unless you’re these guys

Image Credit: NASA, Public domain, via Wikimedia Commons



5 Oct 21, 2021

Option 1: “Failure Is Not An Option”

● Traditional satellites rely on ultra-specialized, space-grade hardware and 
tightly-controlled manufacturing processes to mitigate hardware failure
● Radiation-hardened components, clean-room manufacturing, etc

● Complex, expensive validation processes
● Relatively “old” hardware often gets used because it has

already gone through validation or has flight heritage
● Performance and efficiency may be sacrificed to use “proven” parts

● Usually prohibitively expensive for FemtoStar, and for many
other small satellite projects

Image Credit: Henriok, CC0, via Wikimedia Commons



6 Oct 21, 2021

Option 2: “Failure Is Not An Issue”

● Many small satellite projects take a dramatically different approach
● Build satellites like regular, “non-space-grade” electronic devices
● Some amount of extended component validation should still be done
● Short operational lifetime is acceptable for many scientific, amateur radio, 

or technology demonstrator missions
● Some proposals involve constellations of many such

satellites, with a network tolerant of a few dead ones
● This can be a good idea, and is highly cost-effective
● For FemtoStar’s mission, this is risky

Image Credit: Jt pandey, CC BY-SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia Commons



7 Oct 21, 2021

Option 3: “Failure Is Not A Failure”

● FemtoStar takes an alternate approach – massively reduce the number of 
potential failures of components that can cause the failure of a satellite
● Single points of failure have been near-entirely eliminated

● As with most small satellites, off-the-shelf components are used
● Redundancy allows for lessened reliability demands on individual parts
● Component selection remains cautious and reliability-focused (highest available 

temperature grades, flexible-termination capacitors, etc)
● As with most COTS parts in small satellites, extended testing is still critical

● Satellite must attempt automated recovery and allow for manual diagnostics 
and maintenance, even when operating with damaged hardware



8 Oct 21, 2021

FemtoStar Satellite Architecture – What Is There To Break?

● Two independent electrical buses (one bus supported, but less redundant)
● Two, three, or four Service Transceiver Units (STU), which are independent 

from each other and have some internal redundancy
● ADCS magnetorquers and sensors, optional AIS thruster, etc.
● Optional backup telecommand-only transceiver, in addition to STUs
● Onboard compute (Helium – three units with multiple processors each)

● Helium is responsible for monitoring, and, if failed, attempting to recover other hardware
● “Core” hardware, serves as the central connection between other subsystems
● Only complex subsystem without an onboard “twin” – demands high reliability



9 Oct 21, 2021

What Is Helium?

● Triple-modular-redundant computer
● Three units, each known as a Helion
● Helions run in lockstep (cycle-for-cycle)
● All units monitor each other
● Designed to replicate state in real time

when recovering a failed Helion
● I/O is achieved through voting – a faulty

Helion will be outvoted by the other two.
● Runs from multiple redundant clocks

Image Credit: FemtoStar



10 Oct 21, 2021

Inside the Helion

● Based around a Lattice ECP5 FPGA
● Quite well-reverse-engineered
● Supported by a FOSS toolchain!
● Not too expensive, quite power-efficient

● Relatively self-sufficient within Helium
● Includes RAM (24MB external, ~58KB on FPGA)

and CPU core (RISC-V or in-house LibreVLIW)
● Generates its own power rails from the bus
● Configuration flash is NOT shared
● Selects its own clock from multiple available

Image Credit: FemtoStar



11 Oct 21, 2021

Redundancy In Theory

● Most people have a relatively intuitive understanding of redundancy
● “If one breaks, you have another” is a simple, intuitive concept

● Having two of a device allows one to fail, but not to disagree
● If results differ, it is not clear which is correct – “never go to sea with two chronometers”

● Having three of a device allows one to disagree on outputs
● Triple-Modular Redundancy: two correct results outnumber one incorrect result

● Many explanations of redundant hardware don’t go much further than this
● Actual implementation of this principle is more complex



12 Oct 21, 2021

Redundancy In Practice

● Computers are theoretically deterministic – same inputs, same outputs
● Multiple CPUs given the same inputs at the same times will have the same internal state
● This only holds true if their initial states are the same and synchronization is maintained
● Clock signal is an input too – must match, else lockstep synchronization is lost

● A failure in one unit is likely to cause it to fall out of sync with the others, or 
at the very least output incorrect data
● Not imminently dangerous (faulty unit outvoted), but a TMR system already operating 

with one failed unit has no further redundancy against failure of another unit
● Recovery from this state without resetting the entire system is not trivial

● Even with three units, something must still decide which output is correct



13 Oct 21, 2021

The Majority Gate

● “Voter” circuit - given three bits, decide whether the majority are 1 or 0
● Can create a single point of failure if you’re not careful

● Voter failure is no worse than failure of whatever that voter outputs to
● Nearly everything outside Helium on FemtoStar is redundant

● Can be extremely simple
● Easily implemented with one or two discrete logic ICs
● Even simpler discrete MOSFET implementations possible
● Discrete FETs have large features, lack the parasitic thyristor

structures that allow for radiation-induced single-event latch-up
● Optionally, rad-hard parts can be used for non-redundant outputs (e.g. thruster)

Image Credit: FemtoStar, created with logisim-evolution



14 Oct 21, 2021

Problem 1: The Clock

● In order to maintain lockstep, all units must work from the same clock
● Specifics of this clock are not as important as the fact that there is “one true clock”

● The need for a single, shared clock signal runs counter to redundancy
● Three clocks and a majority gate is not practical – minor real-world 

phase/frequency differences will produce an unusable output
● Central “clock supervisor” devices result in single points of failure
● The solution: feed all clocks to all Helions, let them choose deterministically

● If each Helion chooses a clock signal the exact same way, all will choose same clock
● Failure in clock monitoring becomes no worse than any other failure of one Helion



15 Oct 21, 2021

Problem 2: System Monitoring

● The system as a whole should know the status of all units
● However, a unit must not know which unit it is, lest that affect its outputs

● Remember: same outputs depend on same inputs, and this is a differing input
● Central “system supervisors” are single points of failure

● Helions must determine each others status, but this means knowing which unit is which
● The solution: expose the unit number only to a “Status Unit” on the Helion

● Status Unit combines its known unit number with information from other Helions
● Determines the status of the entire system, including all Helions, based on this
● Exposes only system status to its host processor – all CPUs see same status



16 Oct 21, 2021

Problem 3: Detecting Failure

● Majority gates will prevent faulty outputs, but don’t alert you to failures
● Logic failures, especially on SRAM-based FPGAs, can be subtle

● Logic gates are LUTs in SRAM – one bit flip in a LUT can make 2+2 = 262148 in an adder
● An internal failure that has not yet affected output should still be detectable

● Helions need a way to “prove” to eachother that they are working
● The solution: expose a “state check” bit to the other Helions

● Check bit generated based on various pieces of the Helion’s internal state, each cycle
● Provided to the Status Engine of other Helions to check against other state check bits
● Must be correct for millions-to-billions of cycles before a Helion is deemed operational



17 Oct 21, 2021

Problem 4: Replication

● When a unit fails, you need to try to bring it back before another fails too
● Remember: TMR only protects against one failure at a time
● After a Helion is recovered (e.g. by watchdog reset, automated power cycle, workaround 

FPGA bitstream from ground crew, etc), state must be transferred back onto it
● This is trivial if all Helions are reset, and this is available as a backup
● However, to do so without interrupting service is more complex
● The solution: the Status and Replication Engine

● SRE “shadows” memory writes from working Helions to target Helion in real-time
● Unused memory cycles used to scrub memory and replicate the scrubbed data
● Once all memory is replicated, registers are dumped and replicated, target is started



Thank You!
Questions are welcome, if time permits

Ethan Boicey, Core Technologies Developer – hardware@femtostar.com

More Contact Info (join our Matrix room!) – femtostar.com/about-contact

5th Annual PocketQube Conference


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

