ftu/blst/asm/mulx_mont_256-x86_64.pl
2022-09-09 02:47:49 -04:00

487 lines
10 KiB
Raku
Executable file

#!/usr/bin/env perl
#
# Copyright Supranational LLC
# Licensed under the Apache License, Version 2.0, see LICENSE for details.
# SPDX-License-Identifier: Apache-2.0
#
# "Sparse" in subroutine names refers to most significant limb of the
# modulus. Though "sparse" is a bit of misnomer, because limitation is
# just not-all-ones. Or in other words not larger than 2^256-2^192-1.
# In general Montgomery multiplication algorithm can handle one of the
# inputs being non-reduced and capped by 1<<radix_width, 1<<256 in this
# case, rather than the modulus. Whether or not mul_mont_sparse_256, a
# *taylored* implementation of the algorithm, can handle such input can
# be circumstantial. For example, in most general case it depends on
# similar "bit sparsity" of individual limbs of the second, fully reduced
# multiplicand. If you can't make such assumption about the limbs, then
# non-reduced value shouldn't be larger than "same old" 2^256-2^192-1.
# This requirement can be met by conditionally subtracting "bitwise
# left-aligned" modulus. For example, if modulus is 200 bits wide, you
# would need to conditionally subtract the value of modulus<<56. Common
# source of non-reduced values is redc_mont_256 treating 512-bit inputs.
# Well, more specifically ones with upper half not smaller than modulus.
# Just in case, why limitation at all and not general-purpose 256-bit
# subroutines? Unlike the 384-bit case, accounting for additional carry
# has disproportionate impact on performance, especially in adcx/adox
# implementation.
$flavour = shift;
$output = shift;
if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
$win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
die "can't locate x86_64-xlate.pl";
open STDOUT,"| \"$^X\" \"$xlate\" $flavour \"$output\""
or die "can't call $xlate: $!";
# common argument layout
($r_ptr,$a_ptr,$b_org,$n_ptr,$n0) = ("%rdi","%rsi","%rdx","%rcx","%r8");
$b_ptr = "%rbx";
{ ############################################################## 255 bits
my @acc=map("%r$_",(10..15));
{ ############################################################## mulq
my ($lo,$hi)=("%rbp","%r9");
$code.=<<___;
.text
.globl mulx_mont_sparse_256
.hidden mulx_mont_sparse_256
.type mulx_mont_sparse_256,\@function,5,"unwind"
.align 32
mulx_mont_sparse_256:
.cfi_startproc
push %rbp
.cfi_push %rbp
push %rbx
.cfi_push %rbx
push %r12
.cfi_push %r12
push %r13
.cfi_push %r13
push %r14
.cfi_push %r14
push %r15
.cfi_push %r15
sub \$8,%rsp
.cfi_adjust_cfa_offset 8
.cfi_end_prologue
mov $b_org, $b_ptr # evacuate from %rdx
mov 8*0($b_org), %rdx
mov 8*0($a_ptr), @acc[4]
mov 8*1($a_ptr), @acc[5]
mov 8*2($a_ptr), $lo
mov 8*3($a_ptr), $hi
lea -128($a_ptr), $a_ptr # control u-op density
lea -128($n_ptr), $n_ptr # control u-op density
mulx @acc[4], %rax, @acc[1] # a[0]*b[0]
call __mulx_mont_sparse_256
mov 8(%rsp),%r15
.cfi_restore %r15
mov 16(%rsp),%r14
.cfi_restore %r14
mov 24(%rsp),%r13
.cfi_restore %r13
mov 32(%rsp),%r12
.cfi_restore %r12
mov 40(%rsp),%rbx
.cfi_restore %rbx
mov 48(%rsp),%rbp
.cfi_restore %rbp
lea 56(%rsp),%rsp
.cfi_adjust_cfa_offset -56
.cfi_epilogue
ret
.cfi_endproc
.size mulx_mont_sparse_256,.-mulx_mont_sparse_256
.globl sqrx_mont_sparse_256
.hidden sqrx_mont_sparse_256
.type sqrx_mont_sparse_256,\@function,4,"unwind"
.align 32
sqrx_mont_sparse_256:
.cfi_startproc
push %rbp
.cfi_push %rbp
push %rbx
.cfi_push %rbx
push %r12
.cfi_push %r12
push %r13
.cfi_push %r13
push %r14
.cfi_push %r14
push %r15
.cfi_push %r15
sub \$8,%rsp
.cfi_adjust_cfa_offset 8
.cfi_end_prologue
mov $a_ptr, $b_ptr
mov $n_ptr, $n0
mov $b_org, $n_ptr
mov 8*0($a_ptr), %rdx
mov 8*1($a_ptr), @acc[5]
mov 8*2($a_ptr), $lo
mov 8*3($a_ptr), $hi
lea -128($b_ptr), $a_ptr # control u-op density
lea -128($n_ptr), $n_ptr # control u-op density
mulx %rdx, %rax, @acc[1] # a[0]*a[0]
call __mulx_mont_sparse_256
mov 8(%rsp),%r15
.cfi_restore %r15
mov 16(%rsp),%r14
.cfi_restore %r14
mov 24(%rsp),%r13
.cfi_restore %r13
mov 32(%rsp),%r12
.cfi_restore %r12
mov 40(%rsp),%rbx
.cfi_restore %rbx
mov 48(%rsp),%rbp
.cfi_restore %rbp
lea 56(%rsp),%rsp
.cfi_adjust_cfa_offset -56
.cfi_epilogue
ret
.cfi_endproc
.size sqrx_mont_sparse_256,.-sqrx_mont_sparse_256
___
{
my @acc=@acc;
$code.=<<___;
.type __mulx_mont_sparse_256,\@abi-omnipotent
.align 32
__mulx_mont_sparse_256:
mulx @acc[5], @acc[5], @acc[2]
mulx $lo, $lo, @acc[3]
add @acc[5], @acc[1]
mulx $hi, $hi, @acc[4]
mov 8($b_ptr), %rdx
adc $lo, @acc[2]
adc $hi, @acc[3]
adc \$0, @acc[4]
___
for (my $i=1; $i<4; $i++) {
my $b_next = $i<3 ? 8*($i+1)."($b_ptr)" : "%rax";
my $a5 = $i==1 ? @acc[5] : $lo;
$code.=<<___;
mov %rax, @acc[0]
imulq $n0, %rax
################################# Multiply by b[$i]
xor $a5, $a5 # [@acc[5]=0,] cf=0, of=0
mulx 8*0+128($a_ptr), $lo, $hi
adox $lo, @acc[1]
adcx $hi, @acc[2]
mulx 8*1+128($a_ptr), $lo, $hi
adox $lo, @acc[2]
adcx $hi, @acc[3]
mulx 8*2+128($a_ptr), $lo, $hi
adox $lo, @acc[3]
adcx $hi, @acc[4]
mulx 8*3+128($a_ptr), $lo, $hi
mov %rax, %rdx
adox $lo, @acc[4]
adcx @acc[5], $hi # cf=0
adox $hi, @acc[5] # of=0
################################# reduction
mulx 8*0+128($n_ptr), $lo, %rax
adcx $lo, @acc[0] # guaranteed to be zero
adox @acc[1], %rax
mulx 8*1+128($n_ptr), $lo, $hi
adcx $lo, %rax # @acc[1]
adox $hi, @acc[2]
mulx 8*2+128($n_ptr), $lo, $hi
adcx $lo, @acc[2]
adox $hi, @acc[3]
mulx 8*3+128($n_ptr), $lo, $hi
mov $b_next, %rdx
adcx $lo, @acc[3]
adox $hi, @acc[4]
adcx @acc[0], @acc[4]
adox @acc[0], @acc[5]
adcx @acc[0], @acc[5]
adox @acc[0], @acc[0] # acc[5] in next iteration
adc \$0, @acc[0] # cf=0, of=0
___
push(@acc,shift(@acc));
}
$code.=<<___;
imulq $n0, %rdx
################################# last reduction
xor $lo, $lo # cf=0, of=0
mulx 8*0+128($n_ptr), @acc[0], $hi
adcx %rax, @acc[0] # guaranteed to be zero
adox $hi, @acc[1]
mulx 8*1+128($n_ptr), $lo, $hi
adcx $lo, @acc[1]
adox $hi, @acc[2]
mulx 8*2+128($n_ptr), $lo, $hi
adcx $lo, @acc[2]
adox $hi, @acc[3]
mulx 8*3+128($n_ptr), $lo, $hi
mov @acc[1], %rdx
lea 128($n_ptr), $n_ptr
adcx $lo, @acc[3]
adox $hi, @acc[4]
mov @acc[2], %rax
adcx @acc[0], @acc[4]
adox @acc[0], @acc[5]
adc \$0, @acc[5]
#################################
# Branch-less conditional acc[1:5] - modulus
mov @acc[3], $lo
sub 8*0($n_ptr), @acc[1]
sbb 8*1($n_ptr), @acc[2]
sbb 8*2($n_ptr), @acc[3]
mov @acc[4], $hi
sbb 8*3($n_ptr), @acc[4]
sbb \$0, @acc[5]
cmovc %rdx, @acc[1]
cmovc %rax, @acc[2]
cmovc $lo, @acc[3]
mov @acc[1], 8*0($r_ptr)
cmovc $hi, @acc[4]
mov @acc[2], 8*1($r_ptr)
mov @acc[3], 8*2($r_ptr)
mov @acc[4], 8*3($r_ptr)
ret
.size __mulx_mont_sparse_256,.-__mulx_mont_sparse_256
___
} }
{ my ($n_ptr, $n0)=($b_ptr, $n_ptr); # arguments are "shifted"
$code.=<<___;
.globl fromx_mont_256
.hidden fromx_mont_256
.type fromx_mont_256,\@function,4,"unwind"
.align 32
fromx_mont_256:
.cfi_startproc
push %rbp
.cfi_push %rbp
push %rbx
.cfi_push %rbx
push %r12
.cfi_push %r12
push %r13
.cfi_push %r13
push %r14
.cfi_push %r14
push %r15
.cfi_push %r15
sub \$8, %rsp
.cfi_adjust_cfa_offset 8
.cfi_end_prologue
mov $b_org, $n_ptr
call __mulx_by_1_mont_256
#################################
# Branch-less conditional acc[0:3] - modulus
#mov @acc[4], %rax # __mulq_by_1_mont_256 does it
mov @acc[5], %rdx
mov @acc[0], @acc[2]
mov @acc[1], @acc[3]
sub 8*0($n_ptr), @acc[4]
sbb 8*1($n_ptr), @acc[5]
sbb 8*2($n_ptr), @acc[0]
sbb 8*3($n_ptr), @acc[1]
cmovnc @acc[4], %rax
cmovnc @acc[5], %rdx
cmovnc @acc[0], @acc[2]
mov %rax, 8*0($r_ptr)
cmovnc @acc[1], @acc[3]
mov %rdx, 8*1($r_ptr)
mov @acc[2], 8*2($r_ptr)
mov @acc[3], 8*3($r_ptr)
mov 8(%rsp),%r15
.cfi_restore %r15
mov 16(%rsp),%r14
.cfi_restore %r14
mov 24(%rsp),%r13
.cfi_restore %r13
mov 32(%rsp),%r12
.cfi_restore %r12
mov 40(%rsp),%rbx
.cfi_restore %rbx
mov 48(%rsp),%rbp
.cfi_restore %rbp
lea 56(%rsp),%rsp
.cfi_adjust_cfa_offset -56
.cfi_epilogue
ret
.cfi_endproc
.size fromx_mont_256,.-fromx_mont_256
.globl redcx_mont_256
.hidden redcx_mont_256
.type redcx_mont_256,\@function,4,"unwind"
.align 32
redcx_mont_256:
.cfi_startproc
push %rbp
.cfi_push %rbp
push %rbx
.cfi_push %rbx
push %r12
.cfi_push %r12
push %r13
.cfi_push %r13
push %r14
.cfi_push %r14
push %r15
.cfi_push %r15
sub \$8, %rsp
.cfi_adjust_cfa_offset 8
.cfi_end_prologue
mov $b_org, $n_ptr
call __mulx_by_1_mont_256
add 8*4($a_ptr), @acc[4] # accumulate upper half
adc 8*5($a_ptr), @acc[5]
mov @acc[4], %rax
adc 8*6($a_ptr), @acc[0]
mov @acc[5], %rdx
adc 8*7($a_ptr), @acc[1]
sbb $a_ptr, $a_ptr
#################################
# Branch-less conditional acc[0:4] - modulus
mov @acc[0], @acc[2]
sub 8*0($n_ptr), @acc[4]
sbb 8*1($n_ptr), @acc[5]
sbb 8*2($n_ptr), @acc[0]
mov @acc[1], @acc[3]
sbb 8*3($n_ptr), @acc[1]
sbb \$0, $a_ptr
cmovnc @acc[4], %rax
cmovnc @acc[5], %rdx
cmovnc @acc[0], @acc[2]
mov %rax, 8*0($r_ptr)
cmovnc @acc[1], @acc[3]
mov %rdx, 8*1($r_ptr)
mov @acc[2], 8*2($r_ptr)
mov @acc[3], 8*3($r_ptr)
mov 8(%rsp),%r15
.cfi_restore %r15
mov 16(%rsp),%r14
.cfi_restore %r14
mov 24(%rsp),%r13
.cfi_restore %r13
mov 32(%rsp),%r12
.cfi_restore %r12
mov 40(%rsp),%rbx
.cfi_restore %rbx
mov 48(%rsp),%rbp
.cfi_restore %rbp
lea 56(%rsp),%rsp
.cfi_adjust_cfa_offset -56
.cfi_epilogue
ret
.cfi_endproc
.size redcx_mont_256,.-redcx_mont_256
___
{
my @acc=@acc;
$code.=<<___;
.type __mulx_by_1_mont_256,\@abi-omnipotent
.align 32
__mulx_by_1_mont_256:
mov 8*0($a_ptr), %rax
mov 8*1($a_ptr), @acc[1]
mov 8*2($a_ptr), @acc[2]
mov 8*3($a_ptr), @acc[3]
mov %rax, @acc[4]
imulq $n0, %rax
mov %rax, @acc[0]
___
for (my $i=0; $i<4; $i++) {
my $hi = @acc[4];
$code.=<<___;
################################# reduction $i
mulq 8*0($n_ptr)
add %rax, @acc[4] # guaranteed to be zero
mov @acc[0], %rax
adc %rdx, @acc[4]
mulq 8*1($n_ptr)
add %rax, @acc[1]
mov @acc[0], %rax
adc \$0, %rdx
add @acc[4], @acc[1]
adc \$0, %rdx
mov %rdx, $hi
mulq 8*2($n_ptr)
___
$code.=<<___ if ($i<3);
mov @acc[1], @acc[5]
imulq $n0, @acc[1]
___
$code.=<<___;
add %rax, @acc[2]
mov @acc[0], %rax
adc \$0, %rdx
add $hi, @acc[2]
adc \$0, %rdx
mov %rdx, $hi
mulq 8*3($n_ptr)
add %rax, @acc[3]
mov @acc[1], %rax
adc \$0, %rdx
add $hi, @acc[3]
adc \$0, %rdx
mov %rdx, @acc[4]
___
push(@acc,shift(@acc));
}
$code.=<<___;
ret
.size __mulx_by_1_mont_256,.-__mulx_by_1_mont_256
___
} } }
print $code;
close STDOUT;